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Abstract 

Matrix methods are very popular for polynomial root-finding. The idea is to approximate the zeros 

a given polynomial as the eigenvalues of the companion or generalized companion matrix of the 

given polynomial. In this paper we give some new results related to a parallel algorithm given by 

Bini and Gemignani. The algorithm is a reformulation of Householder’s sequential algorithm that 

is based in computation of the polynomial remainder sequence generated by the Euclidean scheme. 

As a comparison method we use a generalized version of the bisection method, which also is 

considered in both versions sequential and parallel ones. The parallel implementation is done in 

an asynchronous cluster. 
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Introduction  

The problem of finding the zeros of a polynomial in a parallel model of computation has been of 

main interest in these last years. 

Finding the eigenvalues and eigenvectors of matrices is a classic problem in linear algebra, and 

computationally efficient solutions are enormously important. 

Ben et al [2] have presented a fast parallel algorithm based on some properties of the Euclidean 

algorithm and on the divide-and-conquer strategy. 

Bini & Gemignani [3] have redefined Householder’s sequential algorithm in terms of a parallel 

algorithm that works on tri diagonal matrices. 

Monte Carlo methods give statistical estimates for the functional of the solution by performing 

random sampling of a certain variable whose expectation is the desired functional. 
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Let J be any functional that we estimate by Monte Carlo method; 𝜃𝑁 be the estimator, where N is 

the numbers of trials. The probable error is 𝑟𝑁 for which 𝑃𝑟{|𝐽 − 𝜃𝑁| ≥ 𝑟𝑁} =
1

2
=

𝑃𝑟{|𝐽 − 𝜃𝑁| ≤ 𝑟𝑁}. 

In this paper we have presented modification of Monte – Carlo algorithms for evaluating the 

spectral radius of large sparse matrices and we have tested the parallel implementation of these 

methods using MPI. 

 

2. The power method 

Let suppose that n nA R   is diagonalizable,  1

1, , nX AX diag    ,  1, , nX x x  and 

1 2 n     . Given (0) nf C , the Power method [6] produces a sequence of vectors ( )kf  

as follows:  
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Except for special starting points, the iterations converge to an eigenvector corresponding to the 

eigenvalue of A with largest magnitude (dominant eigenvalue) with rate of convergence: 
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Consider the case when we want to compute the smallest eigenvalue. The iteration matrix A is 

replaced by B, where A and B have the same eigenvectors, but different eigenvalues. Letting   

denote a scalar, then the three common choices for B are: B A I   which is called the shifted 

Power method, 1B A  which is called the inverse Power method and  
1

B A I


   which is 

called the inverse shifted Power method.  
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Table 1. Relationship between eigenvalues of A and B.  

B Eigenvalue of B Eigenvalue of A 

1A  1 A  1 B  

A I  A   B   

 
1

A I


   1 A    1 B   

 

Having k iterations, the number of arithmetic operations in Power method is  24 3O kn kn , so 

the power method is not suitable for large sparse matrices.  

 

 

3. The improved algorithm and numerical results  

In this paper we present Monte Carlo algorithms for evaluating the dominant eigenvalue of large 

real sparse matrices and their implementation on a cluster of workstations using MPI. 

Let’s consider the matrix 𝐴 = {𝑎𝑖𝑗}𝑖,𝑗=1
𝑛

, 𝐴 ∈ 𝑅𝑛×𝑛 and the vectors 𝑓 = (𝑓1,⋯ 𝑓𝑛)
𝑡 ∈ 𝑅𝑛×1, 𝑓 =

(ℎ1, ⋯ ℎ𝑛)
𝑡 ∈ 𝑅𝑛×1. The algebraic transformation 𝐴𝑓 ∈ 𝑅𝑛×1 is called a Monte Carlo iteration.  

The dominant eigenvalue based on Direct Monte Carlo method is obtained using the following 

iteration process: 

𝜆𝑚𝑎𝑥 = 𝑙𝑖𝑚𝑖→∞
(ℎ,𝐴𝑖𝑓)

(ℎ,𝐴𝑖−1𝑓)
. 

In order to find the smallest by modulus eigenvalue of A we can use the Inverse Monte Carlo 

algorithm, which can be implemented in two ways, where the most effective is calculating the 

inversion of the matrix A and then applying Direct Monte Carlo algorithm using the iterations with 

the inverse matrix. 

These algorithms use the idea of the Power method combined with Monte Carlo iterations by the 

given matrix, the resolvent matrix and the inverse matrix respectively.  

The power method produces a sequence of vectors. The iterations converge to an eigenvector 

corresponding to the eigenvalue of A with largest magnitude (dominant eigenvalue). 

Consider the case when we want to compute the smallest eigenvalue. The iteration matrix A is 

replaced by B, where A and B have the same eigenvectors, but different eigenvalues.  
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Now consider an algorithm based on Monte Carlo iterations by the resolvent matrix 

 
1 n n
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    . The following presentation holds  
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Having in mind that  
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we have the following Monte Carlo algorithm:  
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We note that if 0q   the algorithm evaluates max , if 0q   the algorithm evaluates min  without 

matrix inversion. 

 

4. Numerical tests 

The numerical tests are made on a cluster with 10 processors workstation under MPI. Each 

processor executes the same program for N/p number of trajectories, i. e. it computes N/p 

independent realizations of the random variable (where p is the number of processors). At the end 

the host processor collects the results of all realizations and computes the desired value. The 

computational time does not include the time for initial loading of the matrix because we consider 

our problem as a part of bigger problem and suppose that every processor constructs it.th results 

for average time (T) and efficiency (E) are given in Table 1, with relative accuracy10−3. 

 

Table 2. Implementation of Direct Monte Carlo Algorithm using MPI. 

Matrix 

dim 

1 pr. 

T 

2 pr. 

T 

2 pr. 

E 

3 pr. 

T 

3 pr. 

E 

4 pr. 

T 

4 pr. 

E 

5 pr. 

T 

5 pr. 

E 

n=128 34 17 1 11 1.03 8 1.06 7 0.97 
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n=1024 111 56 0.99 37 1 27 1.003 21 1.06 

n=2000 167 83 1 56 1 42 1 35 0.96 

 

Table 3. Implementation of Improved Algorithm using MPI. 

Matrix 

dim 

1 pr. 

T 

2 pr. 

T 

2 pr. 

E 

3 pr. 

T 

3 pr. 

E 

4 pr. 

T 

4 pr. 

E 

5 pr. 

T 

5 pr. 

E 

n=128 18 9 1 6 1 4 1.1 3 1.2 

n=1024 30 15 1 10 1 7 1.06 6 1 

n=2000 21 11 0.99 7 1 5 1.04 4 1.04 

 

 

5. Conclusion 

Parallel Monte Carlo algorithm for calculating the eigenvalues are presented and studied. They 

can be applied for well balanced matrices (which have nearly equal sums of elements per row) in 

order to provide good accuracy. 

We propose to use them when one have to calculate the dominant eigenvalue of very large sparse 

matrices since the computational time is almost independent of the dimensions of the matrix and 

their parallel efficiency is super linear. 
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